Data Analysis for Experimental Design (Hardcover)
This engaging text shows how statistics and methods work together, demonstrating a variety of techniques for evaluating statistical results against the specifics of the methodological design. Richard Gonzalez elucidates the fundamental concepts involved in analysis of variance (ANOVA), focusing on single degree-of-freedom tests, or comparisons, wherever possible. Potential threats to making a causal inference from an experimental design are highlighted. With an emphasis on basic between-subjects and within-subjects designs, Gonzalez resists presenting the countless "exceptions to the rule" that make many statistics textbooks so unwieldy and confusing for students and beginning researchers. Ideal for graduate courses in experimental design or data analysis, the text may also be used by advanced undergraduates preparing to do senior theses.
Useful pedagogical features include:
*Discussions of the assumptions that underlie each statistical test
*Sequential, step-by-step presentations of statistical procedures
*End-of-chapter questions and exercises
*Accessible writing style with scenarios and examples
*A companion Web page (www.umich.edu/~gonzo/daed) offering data and syntax files in R and SPSS for the research examples used in the book, a short guide to SPSS syntax, and detailed course notes on each of the book's topics.
Richard Gonzalez is Professor of Psychology at the University of Michigan. He also holds faculty appointments in the Department of Statistics at the University of Michigan and in the Department of Marketing at the Ross School of Business; is a Research Professor at the Research Center for Group Dynamics, which is housed in the Institute for Social Research, University of Michigan; and has taught statistics courses to social science students at all levels at the University of Washington, the University of Warsaw, the University of Michigan, and Princeton University. Dr. Gonzalez's research is in the area of judgment and decision making. His empirical and theoretical research deals with how people make decisions. Given that behavioral scientists make decisions from their data, his interest in decision processes automatically led Dr. Gonzalez to the study of statistical inference. His research contributions in data analysis include statistical methods for interdependent data, multidimensional scaling, and structural equations modeling. Dr. Gonzalez is currently Associate Editor of American Psychologist, and is on the editorial boards of Psychological Methods, Psychological Review, Psychological Science, and the Journal of Experimental Psychology: Learning, Memory, and Cognition. He is an elected member of the Society of Experimental Social Psychology and of the Society of Multivariate Experimental Psychology.
"The discussion of simple ANOVA concepts leads delightfully into more elaborate or general models. One of the very real strengths of this text is its treatment of multiple-comparison methods. There is a wonderful discussion of planned and unplanned contrasts and their use with or without preceding omnibus significance tests. The discussion of orthogonal contrasts and orthogonal polynomials is another strength."--Warren E. Lacefield, PhD, Department of Educational Leadership, Research, and Technology, Western Michigan University
"The arrangement of topics, flow of discussion, conversational language, and general coverage make this a highly readable and informative textbook. Students and instructors will especially appreciate the author's 'storytelling' approach, which is interesting and relevant as well as conceptually rigorous."--Warren E. Lacefield, PhD, Department of Educational Leadership, Research, and Technology, Western Michigan University
"I could see using this book in an upper-level experimental methods course for undergraduates, or in a first course for graduate students in psychology, assuming they have all had introductory statistics."--Michael Milburn, PhD, Department of Psychology, University of Massachusetts-Boston
"It is a foundational book that all researchers (or future researchers) should have in their library."
— Doody's Review Service